High-throughput sequencing of partially edited trypanosome mRNAs reveals barriers to editing progression and evidence for alternative editing.
نویسندگان
چکیده
Uridine insertion/deletion RNA editing in kinetoplastids entails the addition and deletion of uridine residues throughout the length of mitochondrial transcripts to generate translatable mRNAs. This complex process requires the coordinated use of several multiprotein complexes as well as the sequential use of noncoding template RNAs called guide RNAs. The majority of steady-state mitochondrial mRNAs are partially edited and often contain regions of mis-editing, termed junctions, whose role is unclear. Here, we report a novel method for sequencing entire populations of pre-edited partially edited, and fully edited RNAs and analyzing editing characteristics across populations using a new bioinformatics tool, the Trypanosome RNA Editing Alignment Tool (TREAT). Using TREAT, we examined populations of two transcripts, RPS12 and ND7-5', in wild-typeTrypanosoma brucei We provide evidence that the majority of partially edited sequences contain junctions, that intrinsic pause sites arise during the progression of editing, and that the mechanisms that mediate pausing in the generation of canonical fully edited sequences are distinct from those that mediate the ends of junction regions. Furthermore, we identify alternatively edited sequences that constitute plausible alternative open reading frames and identify substantial variability in the 5' UTRs of both canonical and alternatively edited sequences. This work is the first to use high-throughput sequencing to examine full-length sequences of whole populations of partially edited transcripts. Our method is highly applicable to current questions in the RNA editing field, including defining mechanisms of action for editing factors and identifying potential alternatively edited sequences.
منابع مشابه
Trypanosome RNA Editing Mediator Complex proteins have distinct functions in gRNA utilization
Uridine insertion/deletion RNA editing is an essential process in kinetoplastid parasites whereby mitochondrial mRNAs are modified through the specific insertion and deletion of uridines to generate functional open reading frames, many of which encode components of the mitochondrial respiratory chain. The roles of numerous non-enzymatic editing factors have remained opaque given the limitations...
متن کاملEditing domains of Trypanosoma brucei mitochondrial RNAs identified by secondary structure.
The posttranscriptional insertion and deletion of U residues in trypanosome mitochondrial transcripts called RNA editing initiates at the 3' end of precisely defined editing domains that can be identified independently of the cognate guide RNA. The regions where editing initiates in Trypanosoma brucei cytochrome b and cytochrome oxidase subunit II preedited mRNAs are specifically cleaved by a t...
متن کاملTrypanosomatid mitochondrial RNA editing: dramatically complex transcript repertoires revealed with a dedicated mapping tool
RNA editing by targeted insertion and deletion of uridine is crucial to generate translatable mRNAs from the cryptogenes of the mitochondrial genome of kinetoplastids. This type of editing consists of a stepwise cascade of reactions generally proceeding from 3' to 5' on a transcript, resulting in a population of partially edited as well as pre-edited and completely edited molecules for each mit...
متن کاملThe Zinc-Fingers of KREPA3 Are Essential for the Complete Editing of Mitochondrial mRNAs in Trypanosoma brucei
Most mitochondrial mRNAs in trypanosomes undergo uridine insertion/deletion editing that is catalyzed by approximately 20S editosomes. The editosome component KREPA3 is essential for editosome structural integrity and its two zinc finger (ZF) motifs are essential for editing in vivo but not in vitro. KREPA3 function was further explored by examining the consequence of mutation of its N- and C-t...
متن کاملAlternative mRNA Editing in Trypanosomes Is Extensive and May Contribute to Mitochondrial Protein Diversity
The editing of trypanosome mitochondrial mRNAs produces transcripts necessary for mitochondrial functions including electron transport and oxidative phosphorylation. Precursor-mRNAs are often extensively edited by specific uridine insertion or deletion that is directed by small guide RNAs (gRNAs). Recently, it has been shown that cytochrome c oxidase subunit III (COXIII) mRNAs can be alternativ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- RNA
دوره 22 5 شماره
صفحات -
تاریخ انتشار 2016